
Journal of Computational Physics 229 (2010) 3415–3427
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A fully conservative Eulerian–Lagrangian method
for a convection–diffusion problem in a solenoidal field

Todd Arbogast a,b,1, Chieh-Sen Huang c,*

a The University of Texas at Austin, Department of Mathematics, 1 University Station C1200, Austin, TX 78712, USA
b The University of Texas at Austin, Institute for Computational Engineering and Sciences, 1 University Station C0200, Austin, TX 78712, USA
c Department of Applied Mathematics and National Center for Theoretical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan, ROC
a r t i c l e i n f o

Article history:
Received 14 September 2009
Received in revised form 7 January 2010
Accepted 12 January 2010
Available online 20 January 2010

Keywords:
Advection–diffusion
Characteristics
Local conservation
ELLAM
Cellular flow
Divergence-free flow
Convection-enhanced diffusion
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.01.009

* Corresponding author. Tel.: +886 7 5252000; fa
E-mail addresses: arbogast@ices.utexas.edu (T. A

1 This author was supported in part by US Nationa
(KAUST) Academic Excellence Alliance program.
a b s t r a c t

Tracer transport is governed by a convection–diffusion problem modeling mass conserva-
tion of both tracer and ambient fluids. Numerical methods should be fully conservative,
enforcing both conservation principles on the discrete level. Locally conservative charac-
teristics methods conserve the mass of tracer, but may not conserve the mass of the ambi-
ent fluid. In a recent paper by the authors [T. Arbogast, C. Huang, A fully mass and volume
conserving implementation of a characteristic method for transport problems, SIAM J. Sci.
Comput. 28 (2006) 2001–2022], a fully conservative characteristic method, the Volume
Corrected Characteristics Mixed Method (VCCMM), was introduced for potential flows.
Here we extend and apply the method to problems with a solenoidal (i.e., divergence-free)
flow field. The modification is a computationally inexpensive simplification of the original
VCCMM, requiring a simple adjustment of trace-back regions in an element-by-element
traversal of the domain. Our numerical results show that the method works well in prac-
tice, is less numerically diffuse than uncorrected characteristic methods, and can use up to
at least about eight times the CFL limited time step.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

We consider the numerical approximation of a convection–diffusion problem in a solenoidal field. The problem is a type
of cellular flow. In the two-dimensional domain X ¼ ½0;1� � ½0;1�, we seek /ðx; tÞ ¼ /ðx; y; tÞ as the solution to
/t þ u � r/�r � ar/ ¼ F/ for x 2 X; t > 0; ð1:1Þ
/ðx;0Þ ¼ /0ðxÞ for x 2 X; ð1:2Þ
with a periodic boundary condition, where aðxÞP a� > 0 and the vector field u(x) is itself periodic over X and solenoidal
(i.e., divergence-free):
r � u ¼ 0 for x 2 X; t > 0: ð1:3Þ
The equations model convective transport of a tracer / in an ambient fluid with velocity u (the term u � r/) subject to
diffusion (the term �r � ar/) and reactions (the term F/), all in the periodic cell X. Note that the tracer / itself has no effect
on the flow u.
. All rights reserved.
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This problem arises in many applications. It is used as a simple model in the study of vortices in an incompressible fluid,
and, more generally, to model diffusion of passive tracers in a periodic flow [12,14,18–20]. Two practical examples include
simulation and modeling of combustion [24] and magnetohydrodynamics (MHD) [5,9,15,25].

Periodicity of / and u arise in the applications, but, in fact, the numerical algorithm described herein does not require
periodicity. Our algorithm would be formulated the same if we assumed no-flow boundary conditions (u � m ¼ 0 and
ar/ � m ¼ 0 on @X). However, for ease of exposition, we retain the periodicity assumptions.

Lagrangian moving mesh methods have been developed for problems like 1.1, 1.2 and 1.3 for a number of years (see, e.g.
[6,26]). Similar to moving mesh methods, characteristic Eulerian–Lagrangian methods [2,8,11] have been applied to convec-
tion–diffusion problems since at least the 1980s. Recently, Liu et al. [17] applied a characteristic ELLAM scheme to the MHD
problem. Such methods use operator splitting to separate the problem into transport, reaction, and diffusion steps. They use
an Eulerian–Lagrangian framework, treating transport and reaction terms in a Lagrangian frame but diffusion in an Eulerian.
We discuss mainly the transport step in this paper. The advantage of these methods is that large time steps can be used, since
no CFL constraint arises for numerical stability of the transport part. This leads to approximations with less numerical dif-
fusion than competing methods such as Godunov’s method (see, e.g. [1]).

To maintain physical consistency of the numerical solution, the specific characteristic method used must in some way
satisfy the local mass conservation principle numerically. Otherwise, loss or creation of mass over time will quickly destroy
the solution. Such conservative characteristic methods have been known since the early 1990s [2,8]. However, it was re-
cently pointed out by the authors [1] that it is critical to conserve locally the mass of both the transported fluid and the ambi-
ent fluid. We call such a method fully conservative.

Currently, the only fully conservative method, one that maintains the local mass conservation principles of both tracer
and ambient fluids, is the volume corrected characteristics-mixed method (VCCMM) [1]. It is a modification of the ELLAM
scheme called the characteristics-mixed method (CMM) [2], and it was developed and applied to problems with a potential
(i.e., nonsolenoidal) velocity field u. Very briefly, VCCMM computes the transport part of the problem on the computational
mesh over a time step in three main steps. Step 1 is to trace (approximately) each mesh element E backward in time from the
advanced time level to the previous time level along the characteristics or streamlines of the flow. Step 2 is then to correct
the volume of the trace-back elements �E so each agrees with the volume of E (of course maintaining the property that the
entire corrected trace-back mesh tessellates space). Finally, Step 3 is to sum the tracer mass in each �E at the previous time
level. This mass is assumed transported to the original mesh element E at the advanced time level. Note that Step 3 ensures
local mass conservation of the tracer. Because the volume of the trace-back element is corrected in Step 2, the sum of ambi-
ent and tracer mass is conserved, and so the overall VCCMM conserves locally the mass of both fluids. Step 2 is absent from
the original CMM.

In this paper, we adapt and apply the VCCMM to our model problem 1.1, 1.2 and 1.3. Because the velocity u is not po-
tential, the algorithm presented in [1] requires a mild modification, as described in the next section. In Section 3, we present
three numerical examples that illustrate the method and show its advantages. Namely, we can use large time steps, and we
observe less numerical diffusion for the fully conservative scheme as compared to one conserving only the tracer mass. Fi-
nally, our conclusions are noted in Section 4.
2. The numerical method

Suppose we have a sequence of time levels 0 ¼ t0 < t1 < � � � at which we wish to compute the solution. We work over the
time step tn to tnþ1. We use a standard operator splitting technique [10] to decompose the problem (1.1) in time into the
following three main steps.

Transport step. Given / at time tn, we solve for /1 over the time step
/t þ u � r/ ¼ 0 ð2:1Þ
using our modified VCCMM. We give the details later in this section.
Reaction step. Given /1, we solve for /2 over the time step
/t ¼ F/: ð2:2Þ
This is a standard ordinary differential equation at each fixed x 2 X. We may use several micro-time steps in the solution.
Almost any reasonable numerical technique can be used here, so we will discuss it no further.

Diffusion step. Given /2, we solve for / at time tnþ1 over the time step
/t �r � ar/ ¼ 0: ð2:3Þ
This is an elliptic partial differential equation. There are many techniques available to solve it. However, in keeping with
our concerns for the transport step, a locally mass conservative method should be used. As a very incomplete list, these in-
clude, for example, mixed finite element methods [7,22], finite volume methods [3,23], and discontinuous Galerkin methods
[4,15,21]. Any reasonable locally conservative method can be used here, so we do not discuss it further.
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2.1. Characteristics and local mass conservation for transport

The characteristics of (2.1) describe the curves on which / is constant. The characteristic trace-back �xðtÞ ¼ �xðx; tÞ passing
through ðx; tnþ1Þ satisfies the (time backward) differential equation
d�x
dt
¼ uð�x; tÞÞ; tn

6 t 6 tnþ1; ð2:4Þ

�xðtnþ1Þ ¼ x: ð2:5Þ
Let the domain X be partitioned into a set T of elements (i.e., subdomains that tessellate space). Let E 2 T be an element,
and define the space–time trace-back region of E from time tnþ1 back to tn as
E ¼ ð�x; tÞ 2 X� ½tn; tnþ1� : �x ¼ �xðx; tÞ for x 2 E
� �

:

Note that E ¼ E \ ftnþ1g and we define the trace-back region as
�E ¼ �x 2 X : �x ¼ �xðx; tnÞ for x 2 Ef g ¼ E \ ftng: ð2:6Þ
We tacitly use the periodicity of the problem in the above definitions (i.e., if �x traces to @X, it re-enters periodically). We
remark in passing that, in the case of no-flow ðu � m ¼ 0Þ or even outflow ðu � m > 0Þ boundary conditions, we never trace to
@X, so these conditions cause no difficulty for the method. We refer the interested reader to [1] for handling more general
inflow boundary conditions.

Because of the spatial divergence-free condition (1.3), we can rewrite (2.1) as the space–time divergence
/t þ u � r/ ¼ rx;t �
/u
/

� �
¼ 0: ð2:7Þ
Noting that no mass transports across the streamlines, integration over E and application of the divergence theorem to
(2.7) leads to our local mass conservation principle for / [2]. It is
Z

E
/ðx; tnþ1Þdx ¼

Z
�E

/ðx; tnÞdx; ð2:8Þ
which is the basis for our transport method.
However, the ambient fluid is also conserved, and thus also the total fluid; that is, (1.3) itself is
rx;t �
u
1

� �
¼ 0: ð2:9Þ
A similar computation leads to the local volume conservation principle [1]
jEj ¼ j�Ej; ð2:10Þ
where jSj ¼
R

S dx is the volume (i.e., area) of a domain S.
2.2. VCCMM for transport

We begin the transport step by defining our computational mesh T that tessellates space. Unfortunately, given a mesh
element E 2 T , it is not possible to trace points accurately according to (2.4) and (2.5), nor is it possible to fully resolve
the boundary of the trace-back element �E of E. Therefore, in practice, one approximates �E by eE, in which one traces approx-
imately, say, only the vertices and midpoints of E, and simply defines eE to be a polygon connecting the points.

The collection of eE continue to tessellate space, and the locally mass conservative method is to advance the tracer con-
centration in time according to the mass constraint (2.8). We approximate /ðx; tnÞ over the mesh by a piecewise constant
function /n. We begin by projecting the initial condition into the mesh to give /0 and then, given /n, defining on E
/nþ1
E jEj ¼

Z
eE /nðxÞdx: ð2:11Þ
The problem is now manifest: Most likely the volume constraint (2.10) fails for eE, i.e., jEj– jeEj. Since eE is only approxi-
mately �E, we are at liberty to correct the volume error by perturbing the points defining eE, so that indeed
jeEj ¼ j�Ej ¼ jEj: ð2:12Þ
We remark that in practice, one can improve the accuracy of the method by postprocessing the piecewise constant func-
tion /n into a piecewise linear function prior to computing the integral in (2.11). Slope limiting may be necessary to avoid
creating artificial local extrema (see, e.g., [2]). However, this was not done in the numerical results that follow.
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2.3. VCCMM volume adjustment

As we will see in the next section, even small volume errors tend to build up into large errors over many time steps. In
subsurface transport problems, in which the velocity is a potential flow arising from the application of Darcy’s law, the initial,
uncorrected volume errors are very large, and concentrated at the locations of the injection wells (for example, these errors
can be as large as 200% [1]). Therefore, the original VCCMM algorithm contained a complex adjustment strategy involving
three steps. (1) First, one traces particles forward out of the injection wells, and adjusts the volume of the region affected.
(2) Second, between the wells, starting adjacent to the injection wells and moving towards the production wells, entire lay-
ers or rings of elements are adjusted so as to have the correct volume. Assuming the trace-back layer edge closest to an injec-
tor has been adjusted, the points on the far edge are adjusted simultaneously. These trace-back points are adjusted in the
direction of the flow field, so that no bias is introduced into the direction of the overall flow. (3) Finally, the error within
an adjusted layer of elements is now small, and individual elements are adjusted to have the correct volume by traversing
the layer and adjusting the position of the midpoints.

On the other hand, solenoidal or divergence-free flows do not concentrate the volume errors. Numerical examples shown
in the next section show volume errors more on the order of ±1e�3%. Therefore, a complex volume adjustment is not needed,
and only something akin to step (3) is required. That is, we need only a simple element-by-element adjustment, leaving the
vertices unperturbed and adjusting the locations of the midpoints. The only question is to decide the element adjustment
order.

Perhaps the simplest strategy is to adjust the midpoints of each element in column-wise or row-wise fashion, as depicted
in Fig. 2.1, where the original rather than the traceback mesh is shown for ease of visualization. Consider, for example col-
umn-wise adjustment. We begin on the bottom left element (Element 1 in the figure) by adjusting the top boundary mid-
point (between Elements 1 and 2) so that the element volume (of Element 1) is correct. We then proceed upwards to the next
element (Element 2) and adjust its top boundary midpoint until we reach the top of the domain. This top element is not yet
adjusted for volume balance. Instead, we move to the next right column and repeat (for Elements 3–4, 5–6, and then 7–8).
Finally, we adjust the right-hand side midpoints of the top row, starting from the left and working right (Elements 9–11).
Note that the final element (Element 12) needs no adjustment, since the outer boundary condition (periodicity) implies that
we maintain global volume conservation. This simple adjustment procedure often works very well and produces no system-
atic bias, since the initial volume errors observed are so small. The row-wise adjustment is similar. Obviously there are other,
equally simple adjustment strategies that one might apply.

However, in some examples a systematic bias may result. The reason is that in some examples the volume errors tend to
build up in the last few elements. This is especially true when large time steps are used, since the volume errors tend to be
larger in that case. The goal is to traverse the domain in such a way that volume errors tend to cancel along the way. That is,
we do not want to choose an element ordering that first treats eE that are mostly too big, followed by elements mostly too
small. The first too big eE will push its volume into the next eE, making it even larger, which must in turn be pushed into the
next eE, and so forth, until finally the too small elements are encountered.

We will see a staircase-like diagonal element-by-element adjustment in the next section (Example 1 with a large time
step, used also in the other two examples with large time steps – see Fig. 3.7). One traverses the domain from the bot-
tom-left to the upper-right corner along 45� lines from the bottom-left to the top-right.

3. Some numerical results

In this section we show by numerical examples that the volume correction step is a critical component in Lagrangian
approximation of convection in a solenoidal field. Our examples apply to Eqs. (1.1) and (1.2). Recall that in all cases
X ¼ ½0;1� � ½0;1�. Except in one case, we turn off the reaction and diffusion, i.e., we set F ¼ 0 and a ¼ 0, so we see only pure
transport of the tracer.

We use rectangular grids for ease of implementation, though this is not necessary. All the ideas extend to unstructured
triangular meshes, and even to more general arbitrary nonconforming tessellations of the domain into elements (although
Fig. 2.1. Examples of column-wise (left) and row-wise (right) adjustment strategies on a simple rectangular grid, wherein we show the original grid rather
than the traceback mesh. The numbers give the element volume adjustment order, and the arrows show the midpoint that is adjusted (the arrow pointing
out is the one adjusted for that element).
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the elements should probably be convex or nearly so). The only difficulty perhaps is to find an efficient trace-back tracking
algorithm (see, e.g., [13,16]).

The basic Lagrangian methods found in the literature have no volume adjustment. A prototypical example is the Charac-
teristics Mixed Method (CMM) [2], which we take as the baseline in our numerical results. We compare these to the VCCMM,
which is the same method as CMM except for the addition of the volume correction step of Section 2.3. Thus our numerical
results are strictly comparable, and show only the effect of volume conservation.

3.1. Example 1

For our first numerical example, We define u by
u ¼
�0:1þ 50 sinð2pxÞ cosð2pyÞ
�50 cosð2pxÞ sinð2pyÞ

� �
;

which is divergence-free and gives rise to the flow shown in Fig. 3.1. The initial condition is
/ðx; y;0Þ ¼
2; 0:3 < x < 0:7 and 0:3 < y < 0:7;
1; otherwise;

�
ð3:1Þ
which has a high concentration in a small square of width 0.4 in the center of the domain ð0;1Þ2.
We use a spatial grid of 256� 256 and time step Dt ¼ 1e—4, which is 2.56 times the CFL time step, defined as h

2umax
, where

h is the grid spacing and umax is the maximal speed of the velocity u. The initial, uncorrected volume error is depicted in
Fig. 3.2 and varies from ±1.72e�3%. The scheme without volume adjustment, CMM, is subject to this volume error. The sim-
ple correction algorithm of Section 2.3 reduces these errors to the order of rounding error. Although the volume error is small
in this problem, the error does build up over time, as can be seen in Fig. 3.3, which compares the tracer concentration / for
CMM and VCCMM. Our numerical data is summarized in Table 3.1.

It is clear that there is a big difference between the two methods. The results using a 512� 512 grid and half the original
time step (Dt = 0.5e�4) is shown in Fig. 3.4. The two methods’ results are not nearly so dissimilar, and they indicate that
VCCMM is more accurate. In fact, VCCMM on the coarser grid (Fig. 3.3) has similar resolution as CMM on the finer grid
(Fig. 3.4). Therefore we conclude that VCCMM is the better scheme, since it produces accurate answers in lower resolution
computations.

A careful examination of Fig. 3.4 shows that, in the case of the CMM, tracer fills the center of the flow cells due to a larger
numerical diffusion instigated from the volume errors. This phenomenon is lessened when a finer grid is used, but not com-
pletely removed.

So far our time steps are relatively small, i.e., 2.56 times the CFL condition. We next increase the time step by a factor of 3
to 7.69 times of the CFL condition. We show these results in Fig. 3.5. On the left is VCCMM with a 256� 256 grid and
Dt ¼ 3e—4, which should be compared to the right side of Fig. 3.3 with the same grid and Dt = 1e�4. On the right is VCCMM
with a 512� 512 grid and Dt = 1.5e�4, which is comparable to the right side of Fig. 3.4 with Dt = 0.5e�4. We see less numer-
ical diffusion when we can take a longer time step.

In this set of numerical tests on the 256� 256 grid, the maximum volume errors grow from 1.72e�3% to about 1.55e�2%
when we raise the time step from 1e�4 to 3e�4. Although the volume error is still very small, a straight-forward row-wise
horizontal then vertical element-by-element adjustment (see Section 2.3, i.e., Fig. 2.1) does not work. The reason is that the
volume errors tend to build up in the last few elements. In this example, we instead used a staircase-like diagonal element-
by-element adjustment from the bottom-left to the upper-right corner, as mentioned in Section 2.3 (see Fig. 3.7). In this
method, we use a diagonal adjustment pattern from the bottom or left side of the domain until we reach the right or top
of the domain. We then adjust the top row and right-most column.
Fig. 3.1. Example 1: The velocity field, with the region occupied initially by the higher tracer concentration value.



Fig. 3.2. Example 1: Initial, uncorrected volume errors using spatial mesh 256� 256 and Dt ¼ 1e—4. The variation is from ±1.72e-3%.

Fig. 3.3. Example 1: Tracer on 256� 256 grid for CMM (left) and VCCMM (right) at time 0.3 (3000 steps, top) and 0.4 (4000 steps, bottom).

Table 3.1
Numerical data for various cases of Example 1.

1=h Dt Dt=CFL Initial volume error Adjustment pattern Depicted in figure(s)

256 1.0e�4 2.56 ±1.72e�5 column-wise Fig. 3.3
512 0.5e�4 2.56 – column-wise Fig. 3.4
256 3.0e�4 7.69 ±15.5e�5 diagonal Figs. 3.5 and 3.6
512 1.5e�4 7.69 – diagonal Fig. 3.5
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From the volume error plot (Fig. 3.2), it is easy to see the reason why we needed this adjustment strategy. If we adjust
element-by-element in a horizontal strip, the error builds up at the very last element of the row, since the volume errors
have the same sign along each x-strip (as does each y-strip, by the way). However, if we look at 45� angle strips, the volume
errors take alternate signs, and they balance themselves along the strips. Therefore, the volume errors tend not to accumu-
late in the very last element, and we are able to use our relatively large time step.



Fig. 3.4. Example 1: Tracer on 512� 512 grid for CMM (left) and VCCMM (right) at time 0.3 (6000 steps, top) and 0.4 (8000 steps, bottom).

Fig. 3.5. Example 1: VCCMM tracer on 256� 256 grid with Dt ¼ 3e—4 (left) and on 512� 512 grid with Dt ¼ 1:5e—4 (right) at times 0.3 (top) and 0.4
(bottom).
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Finally, it is instructive to note the level of detail that the method captures. Fig. 3.6 shows four snapshots of this problem
at steps 10, 30, 60, and 80 with timestep Dt = 3e�4 on a 256� 256 grid. Note the very low level of numerical diffusion that
the fully conservative method is subject to.

3.2. Example 2

We next consider a problem with four eddies in its velocity field, taken from Weiss [25] and considered also in [17,26].
We note that the particular ELLAM method they use is not fully conservative, so it should suffer from the same volume error
problem as CMM does. The velocity u is defined by
u1ðx; yÞ ¼
sinð4pxÞ

4p ð2yð1� yÞ2 � 2y2ð1� yÞÞ;

u2ðx; yÞ ¼ � cosð4pxÞy2ð1� yÞ2
and it is depicted by Fig. 3.8. We use the initial condition
/ðx; y;0Þ ¼
2; 0:3 < y < 0:7;
1; otherwise:

�



Fig. 3.6. Example 1: Evolution of the tracer concentration at early times on a 256� 256 grid. Shown are steps 10, 30, 60, and 80 with Dt ¼ 3e—4. Colors vary
from 1.06 (blue) to 1.94 (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3.7. A staircase-like diagonal element-by-element adjustment strategy from the bottom-left to the upper-right corner on a simple rectangular grid,
wherein we show the original grid rather than the traceback mesh. The numbers give the element volume adjustment order, and the arrows show the
midpoint that is adjusted (the arrow pointing out is the one adjusted for that element).

Fig. 3.8. Example 2: The velocity field, showing its four eddies, with the region occupied initially by the higher tracer concentration value.
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Our numerical data is summarized in Table 3.2. For a spatial grid of 128� 128 and time step Dt ¼ 0:1, which is the 1.6
times the CFL time step, the initial volume error (see Fig. 3.9) is at the magnitude of 1.09e�3%, which, even though very
small, is significant over many steps. Fig. 3.10 shows a comparison of the uncorrected CMM and the fully conservative
VCCMM (using simple column-wise adjustment) concentration at step 3000, i.e., time 300. On the left-hand side we plot



Fig. 3.9. Example 2: Initial, uncorrected volume errors for 128� 128 mesh and Dt ¼ 0:1. The variation is from �0.887e�3% to 1.09e�3%.

Fig. 3.10. Example 2: At time 300, (left) the VCCMM tracer concentration, and (right) corresponding concentration contours for VCCMM (in red) and CMM
(in black). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3.2
Numerical data for various cases of Example 2.

1=h Dt Dt=CFL Initial volume error Adjustment pattern Diffusion
a

Depicted in figure(s)

128 0.1 1.6 ±1.0e�5 Column-wise 0 Fig. 3.10
128 0.5 8.0 ±30.e�5 Diagonal 0 Figs. 3.12 and 3.13
128 0.5 8.0 ±30.e�5 Diagonal 0.01 Fig. 3.14
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in color the VCCMM concentration between 1.10 (blue2) and 1.54 (red). Corresponding contour lines are plotted on the right-
hand side for both VCCMM (in red) and CMM (in black). As can be seen easily, the red ovals (VCCMM) are much smaller than
the black ovals (CMM), so VCCMM exhibits less numerical diffusion.

We next attempt to lengthen the time step. We use the same spatial grid of 128� 128, but now the time step Dt ¼ 0:5,
which is eight times of the CFL condition. The maximum initial volume errors grow from 1e�3% to about 3e�2% (see
Fig. 3.11). As before, a staircase-like diagonal type of element-by-element adjustment removes the volume error easily.

In Fig. 3.12, the black concentration contours use the previous Dt ¼ 0:1, which takes 3000 steps to time t ¼ 300, while the
red contours are for Dt ¼ 0:5, which takes only 600 steps to the final time. One can see easily that the red ovals ðDt ¼ 0:5Þ are
much smaller than the black ovals ðDt ¼ 0:1Þ, so again we see less numerical diffusion whenever we can take a larger time
step.

Finally, we consider the problem with nonzero physical diffusion, i.e., (1.1) with a ¼ 0:01. Compared to Fig. 3.10 (left), the
physical diffusion in Fig. 3.14 is apparent, especially near the bottom and top of the domain, i.e., at y ¼ 0 and y ¼ 1.
2 For interpretation of color in Fig. 3.9, the reader is referred to the web version of this article.



Fig. 3.11. Example 2: Initial, uncorrected volume errors for 128� 128 mesh and Dt ¼ 0:5. The variation is from �1.66e�12% to 2.77e�2%.

10 1.68E+00
9 1.61E+00
8 1.54E+00
7 1.47E+00
6 1.40E+00
5 1.33E+00
4 1.26E+00
3 1.19E+00
2 1.12E+00
1 1.05E+00

Fig. 3.12. Example 2: VCCMM contours for Dt ¼ 0:1 (black) and Dt ¼ 0:5 (red) at t ¼ 300, i.e., using 3000 and 600 time steps, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3.13. Example 2: Evolution of the tracer concentration at early times on a 128� 128 grid. Shown are steps 10, 30, 60, and 80 with Dt ¼ 0:5. Colors vary
from 1.06 (blue) to 1.94 (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.3. Example 3

Lastly, we show a numerical example with a time-dependent vector field. We modify u from Example 1 to
u ¼
�0:1þ 50 sinð2pxþ 0:4 cosð50tÞÞ cosð2pyÞ
�50 cosð2pxþ 0:4 cosð50tÞÞ sinð2pyÞ

� �
; ð3:2Þ
and we use the same initial condition (3.1) as in Example 1.



Fig. 3.14. Example 2: VCCMM tracer concentration at time 300 with physical diffusion a ¼ 0:01 (on a 128� 128 grid with Dt ¼ 0:5).

Fig. 3.15. Example 3: Tracer on 256� 256 grid for CMM (left) and VCCMM (right) at time 0.3 (3000 steps, top) and 0.4 (4000 steps, bottom).

Fig. 3.16. Example 3: Tracer on 512� 512 grid for CMM (left) and VCCMM (right) at time 0.3 (6000 steps, top) and 0.4 (8000 steps, bottom).
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In Fig. 3.15, we see clear differences between CMM and VCCMM (with simple column-wise adjustment) using a
256� 256 grid and Dt = 1e�4. Refinement to a 512� 512 grid and Dt = 5e�5 in Fig. 3.16 shows that VCCMM gives the more
accurate result, and that with CMM, the tracer fills the cells due to larger numerical diffusion.
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Finally, we note that we also ran relatively large time steps for this problem. The staircase-like diagonal adjustment pro-
cedure (Section 2.3 and Fig. 3.7) worked well in removing any volume error; however, a time shift was necessary. For the
time-independent problem (Example 1), the adjustment starts at element (1,1) on a domain n� n;n ¼ 256 or 512, proceeds
to the line containing (2,1) and (1,2), and then to the line (3,1), (2,2), and (1,3), etc. Now for the time-dependent problem,
the contours, and so also the volume errors, shift a bit to the right in time, as can be seen in Figs. 3.15 and 3.16. Thus we need
to take the starting point for the adjustment algorithm at (a,1), where the offset a, 1 6 a 6 n, depends on time. From (3.2), we
see that a should be the solution of 2pða� 1Þ=nþ 0:4 cosð50tÞ ¼ 0.
4. Conclusions

In this paper, we have described the Volume Corrected Characteristics Mixed Method (VCCMM) [1], which enforces local
mass conservation of both the tracer and ambient fluids in transport problems with a velocity governed by a potential. A
simple modification was presented to extend the definition of the VCCMM to solenoidal flows. The modification is actually
a simplification of the original VCCMM, requiring adjustment of trace-back regions eE in an element-by-element traversal of
the domain, so that each eE has the volume of the original mesh element E. Often a simple column-wise or row-wise adjust-
ment suffices, but in other cases a better ordering is necessary. The traversal path should be chosen so that local volume
errors tend to cancel along the way.

Our numerical results show that the method works well in practice, and better than uncorrected characteristic methods,
such as the Characteristics Mixed Method (CMM) [2], which are more numerically diffuse than corrected versions. In fact, the
corrected algorithm on a coarse grid can attain a similar level of resolution as the uncorrected algorithm on a fine grid.

The main advantage of characteristic methods is that, in principle, one may use large time steps. This has the effect of
reducing mesh projection errors, and ultimately reducing numerical diffusion. However, the volume error grows with the
time step. In uncorrected characteristic methods, one cannot use too large a time step before the numerical diffusion due
to volume nonconservation degrades the solution. The volume correction step rectifies this difficulty in practice, and we
showed examples using up to eight times the CFL limited time step.

There are many locally mass conservative characteristic methods available that only conserve the tracer mass. Our results
show that they can benefit from the computationally inexpensive local volume correction adjustment procedure presented
here.
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